System Identification of a Multi-timescale Adaptive Threshold Neuronal Model
نویسندگان
چکیده
1An abridged version (Jabalameli and Behal, 2015) of this paper was presented at the 2015 International Conference on Computational Advances in Bio and Medical Sciences.The study was supported by Award # R15NS062402 from NINDS. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NINDS or the NIH. ar X iv :1 80 3. 04 23 6v 1 [ qbi o. N C ] 2 3 Fe b 20 18 In this paper, the parameter estimation problem for a multi-timescale adaptive threshold (MAT) neuronal model is investigated. By manipulating the system dynamics, which comprise of a non-resetting leaky integrator coupled with an adaptive threshold, the threshold voltage can be obtained as a realizable model that is linear in the unknown parameters. This linearly parametrized realizable model is then utilized inside a prediction error based framework to identify the threshold parameters with the purpose of predicting single neuron precise firing times. The iterative linear least squares estimation scheme is evaluated using both synthetic data obtained from an exact model as well as experimental data obtained from in vitro rat somatosensory cortical neurons. Results show the ability of this approach to fit the MAT model to different types of fluctuating reference data. The performance of the proposed approach is seen to be superior when comparing with existing identification approaches used by the neuronal community.
منابع مشابه
Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملIdentification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملMade-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold
Information is transmitted in the brain through various kinds of neurons that respond differently to the same signal. Full characteristics including cognitive functions of the brain should ultimately be comprehended by building simulators capable of precisely mirroring spike responses of a variety of neurons. Neuronal modeling that had remained on a qualitative level has recently advanced to a ...
متن کاملVacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery
Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (seco...
متن کاملThreshold F-policy and N-policy for multi-component machining system with warm standbys
The integration of marketing and demand with logistics and inventories (supply side of companies) may cause multiple improvements; it can revolutionize the management of the revenue of rental companies, hotels, and airlines. In this paper, we develop a multi-objective pricing-inventory model for a retailer. Maximizing the retailer's profit and the service level are the objectives, and shorta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018